Serveur d'exploration Posturo

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An Inexpensive 6D Motion Tracking System for Posturography.

Identifieur interne : 000458 ( Main/Exploration ); précédent : 000457; suivant : 000459

An Inexpensive 6D Motion Tracking System for Posturography.

Auteurs : William V C. Figtree [Australie] ; Americo A. Migliaccio [Australie, États-Unis]

Source :

RBID : pubmed:30013507

Abstract

Computerized posturography is most often performed with a force plate measuring center-of-pressure (COP). COP is related to postural control actions but does not monitor the outcome of those actions, i.e., center-of-mass (COM) stability. For a more complete analysis of postural control COM should also be measured; however, existing motion tracking technology is prohibitively expensive and overcomplicated for routine use. The objective of this work was to create and validate an inexpensive and convenient stereo vision system which measured a trunk-fixed target's 3D position and orientation relating to COM. The stereo vision system would be complementary to typical force plate methods providing precise 6D position measurements under laboratory conditions. The developed system's measurement accuracy was worst in the inferior-superior axis (depth) and pitch coordinates with accuracy measures 1.1 mm and 0.8°, respectively. The system's precision was worst in the depth and roll coordinates with values 0.1 mm and 0.15°, respectively. Computer modeling successfully predicted this precision with 11.3% mean error. Correlation between in vivo target position (TP) and COP was above 0.73 with COP generally demonstrating larger excursions oscillating around TP. Power spectral analysis of TP revealed 99% of the signal was bound below 1.1 Hz matching expectations for COM. The new complementary measurement method enables identification of postural control strategies and as a result more complete analysis. Stereo vision is a useful complement to typical force plate equipment. The system presented here is inexpensive and convenient demonstrating potential for routine use in clinic and research. In order to use this system in clinic, future work is required in interpretation of this system's data and normal reference values must be established across gender and age in a healthy population followed by values from patients with different pathologies.

DOI: 10.3389/fneur.2018.00507
PubMed: 30013507
PubMed Central: PMC6036273


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An Inexpensive 6D Motion Tracking System for Posturography.</title>
<author>
<name sortKey="Figtree, William V C" sort="Figtree, William V C" uniqKey="Figtree W" first="William V C" last="Figtree">William V C. Figtree</name>
<affiliation wicri:level="1">
<nlm:affiliation>Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Migliaccio, Americo A" sort="Migliaccio, Americo A" uniqKey="Migliaccio A" first="Americo A" last="Migliaccio">Americo A. Migliaccio</name>
<affiliation wicri:level="1">
<nlm:affiliation>Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30013507</idno>
<idno type="pmid">30013507</idno>
<idno type="doi">10.3389/fneur.2018.00507</idno>
<idno type="pmc">PMC6036273</idno>
<idno type="wicri:Area/Main/Corpus">000359</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000359</idno>
<idno type="wicri:Area/Main/Curation">000359</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000359</idno>
<idno type="wicri:Area/Main/Exploration">000359</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An Inexpensive 6D Motion Tracking System for Posturography.</title>
<author>
<name sortKey="Figtree, William V C" sort="Figtree, William V C" uniqKey="Figtree W" first="William V C" last="Figtree">William V C. Figtree</name>
<affiliation wicri:level="1">
<nlm:affiliation>Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Migliaccio, Americo A" sort="Migliaccio, Americo A" uniqKey="Migliaccio A" first="Americo A" last="Migliaccio">Americo A. Migliaccio</name>
<affiliation wicri:level="1">
<nlm:affiliation>Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in neurology</title>
<idno type="ISSN">1664-2295</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Computerized posturography is most often performed with a force plate measuring center-of-pressure (COP). COP is related to postural control actions but does not monitor the outcome of those actions, i.e., center-of-mass (COM) stability. For a more complete analysis of postural control COM should also be measured; however, existing motion tracking technology is prohibitively expensive and overcomplicated for routine use. The objective of this work was to create and validate an inexpensive and convenient stereo vision system which measured a trunk-fixed target's 3D position and orientation relating to COM. The stereo vision system would be complementary to typical force plate methods providing precise 6D position measurements under laboratory conditions. The developed system's measurement accuracy was worst in the inferior-superior axis (depth) and pitch coordinates with accuracy measures 1.1 mm and 0.8°, respectively. The system's precision was worst in the depth and roll coordinates with values 0.1 mm and 0.15°, respectively. Computer modeling successfully predicted this precision with 11.3% mean error. Correlation between
<i>in vivo</i>
target position (TP) and COP was above 0.73 with COP generally demonstrating larger excursions oscillating around TP. Power spectral analysis of TP revealed 99% of the signal was bound below 1.1 Hz matching expectations for COM. The new complementary measurement method enables identification of postural control strategies and as a result more complete analysis. Stereo vision is a useful complement to typical force plate equipment. The system presented here is inexpensive and convenient demonstrating potential for routine use in clinic and research. In order to use this system in clinic, future work is required in interpretation of this system's data and normal reference values must be established across gender and age in a healthy population followed by values from patients with different pathologies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30013507</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-2295</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in neurology</Title>
<ISOAbbreviation>Front Neurol</ISOAbbreviation>
</Journal>
<ArticleTitle>An Inexpensive 6D Motion Tracking System for Posturography.</ArticleTitle>
<Pagination>
<MedlinePgn>507</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fneur.2018.00507</ELocationID>
<Abstract>
<AbstractText>Computerized posturography is most often performed with a force plate measuring center-of-pressure (COP). COP is related to postural control actions but does not monitor the outcome of those actions, i.e., center-of-mass (COM) stability. For a more complete analysis of postural control COM should also be measured; however, existing motion tracking technology is prohibitively expensive and overcomplicated for routine use. The objective of this work was to create and validate an inexpensive and convenient stereo vision system which measured a trunk-fixed target's 3D position and orientation relating to COM. The stereo vision system would be complementary to typical force plate methods providing precise 6D position measurements under laboratory conditions. The developed system's measurement accuracy was worst in the inferior-superior axis (depth) and pitch coordinates with accuracy measures 1.1 mm and 0.8°, respectively. The system's precision was worst in the depth and roll coordinates with values 0.1 mm and 0.15°, respectively. Computer modeling successfully predicted this precision with 11.3% mean error. Correlation between
<i>in vivo</i>
target position (TP) and COP was above 0.73 with COP generally demonstrating larger excursions oscillating around TP. Power spectral analysis of TP revealed 99% of the signal was bound below 1.1 Hz matching expectations for COM. The new complementary measurement method enables identification of postural control strategies and as a result more complete analysis. Stereo vision is a useful complement to typical force plate equipment. The system presented here is inexpensive and convenient demonstrating potential for routine use in clinic and research. In order to use this system in clinic, future work is required in interpretation of this system's data and normal reference values must be established across gender and age in a healthy population followed by values from patients with different pathologies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Figtree</LastName>
<ForeName>William V C</ForeName>
<Initials>WVC</Initials>
<AffiliationInfo>
<Affiliation>Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Migliaccio</LastName>
<ForeName>Americo A</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Neurol</MedlineTA>
<NlmUniqueID>101546899</NlmUniqueID>
<ISSNLinking>1664-2295</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">center-of-mass</Keyword>
<Keyword MajorTopicYN="N">center-of-pressure</Keyword>
<Keyword MajorTopicYN="N">posturography</Keyword>
<Keyword MajorTopicYN="N">stereo vision</Keyword>
<Keyword MajorTopicYN="N">sway</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30013507</ArticleId>
<ArticleId IdType="doi">10.3389/fneur.2018.00507</ArticleId>
<ArticleId IdType="pmc">PMC6036273</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biomech. 1987;20(7):715-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3654669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Neurophysiol. 2013 Oct;124(10):2036-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23849702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Prog Technol. 1990 May;16(1-2):31-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2138696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 09;8(8):e70981</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23951059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomech. 1979;12(12):911-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">528549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Motor Control. 2002 Jul;6(3):246-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12122219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Phys Rehabil Med. 2010 Jun;46(2):239-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20485226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Phys Med Rehabil. 2004 Jun;85(6):896-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15179642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Geriatr Phys Ther. 2010 Jan-Mar;33(1):19-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20503730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Eng Phys. 2009 Mar;31(2):276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18835738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurophysiol Clin. 2015 Nov;45(4-5):285-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26388359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Phys Med Rehabil. 1994 Feb;75(2):216-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8311681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Phys. 2014 Nov;41(11):113502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25370673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomech. 2007;40(6):1392-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Neurobiol. 1994 Dec;4(6):877-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7888772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Otolaryngol Head Neck Surg. 1993 Oct;109(4):735-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8233513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Neurophysiol. 2008 Nov;119(11):2424-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18789756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Otolaryngol. 2009 Mar;129(3):281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18720065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gait Posture. 2013 Feb;37(2):290-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22889928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomech. 1999 Nov;32(11):1237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10541075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vision Res. 2006 Aug;46(16):2475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16545855</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Figtree, William V C" sort="Figtree, William V C" uniqKey="Figtree W" first="William V C" last="Figtree">William V C. Figtree</name>
</noRegion>
<name sortKey="Migliaccio, Americo A" sort="Migliaccio, Americo A" uniqKey="Migliaccio A" first="Americo A" last="Migliaccio">Americo A. Migliaccio</name>
<name sortKey="Migliaccio, Americo A" sort="Migliaccio, Americo A" uniqKey="Migliaccio A" first="Americo A" last="Migliaccio">Americo A. Migliaccio</name>
</country>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Migliaccio, Americo A" sort="Migliaccio, Americo A" uniqKey="Migliaccio A" first="Americo A" last="Migliaccio">Americo A. Migliaccio</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PosturoV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000458 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000458 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PosturoV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30013507
   |texte=   An Inexpensive 6D Motion Tracking System for Posturography.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30013507" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PosturoV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 22:38:36 2020. Site generation: Thu Mar 25 16:16:50 2021